Vladislav Kruglikov (vladislavkruglikov), 22 года, Россия, МоскваVladislav Kruglikov (vladislavkruglikov), 22 года, Россия, Москва

Vladislav Kruglikov

Accomplished Research Engineer with over a 3 years of ML experienceResearch EngineerСтарший (Senior)
Рассмотрю предложения

Контакты

Войти
Возраст: 22 года
Опыт работы: 3 года и 4 месяца
Регистрация: 28.05.2021
Последний визит: 1 неделю назад
Гражданство: Россия
Местоположение: Россия, Москва
Дополнительно: готов к переезду и к удаленной работе
Знание языков: Английский С1

Обо мне

As an accomplished Research Engineer with over a 3 years of ML experience I specialize in natural language processing and consistently deliver high quality products. My track record includes building auto machine learning platform that impacted many teams and user experiences. I have played a key tech leadership role in cross functional team collaboration setting direction for teams and mentoring junior team members

Навыки

Внутри навыка можно посмотреть пройденные и доступные тесты
Python
Docker
C
PyTorch
NLP
NLU
Машинное обучение
Deep Learning
Нейронные сети
LLM

Участие в профсообществах

Опыт работы

  • Делаем жизнь 40+ миллионов клиентов проще и удобнее каждый день
    МоскваБолее 5000 сотрудников
    Research Engineer (Старший)Research Engineer
    Февраль 2022 — По настоящее время (3 года и 4 месяца)

    • Created distributed inference deployment for open source LLMs that allowed to use LLMs with confidential information and collect data with the quality compared to proprietary models in the cloud by serving LLMs with over 1 trillion parameters on premise cluster

    • Lead a small team to built natural language processing platform that cut trained model TTM from 1 day to 1 minute with the same model quality by training adapters with parameters efficient fine tuning and building custom inference server runtime on top of nvidia triton inference server

    • Built cluster analysis platform with user interface that allowed analysts to get insights from data 1000% faster with 90% better SBS quality by doing cluster analysis on GPU and training domain specific embedders

    • Built personal data detection system that allowed 1000+ people to use proprietary LLMs on the cloud to solve tasks by verifying that requests do not contain company users data before sent to the cloud

    • Built a system to train and evaluate named entity recognition models that allowed developers to save 400% of development time by leveraging reusable components for both training and evaluation and achieved 100% test coverage across all components

    • Built a system for aspect sentiment triplet extraction that achieved 90% recall and 80% precision by collecting high quality data through internal crowdsourcing platform and implementing active learning pipeline

Высшее образование

  • ВШЭ (НИУ)

    Национальный исследовательский университет «Высшая школа экономики»
    Москва5531 выпускник
    Факультет компьютерных наук
    Июнь 2022 — По настоящее время (2 года и 11 месяцев)

    Bachelor of Applied Mathematics and Computer Science