Компьютерное зрение

Улучшаемые навыки

Учёный по данным · Python

Где проходит обучение

Онлайн обучение

Начало учёбы и длительность

По факту набора потока · 4 месяца

Стоимость

70 000 рублей

Описание курса

Вы освоите принципы машинного обучения в области компьютерного зрения и сможете решать индустриальные задачи, используя открытые датасеты. По ходу курса вы обучите нейросети для решения задач:

  • классификации и сегментации изображений
  • детекции объектов на изображениях
  • отслеживания объектов на видео
  • обработки трехмерных сцен
  • порождения изображений и атаки на обученные модели нейронных сетей

Также вы научитесь пользоваться основными фреймворками для создания нейросетей: PyTorch, TensorFlow и Keras.

Для кого этот курс? 

Для специалистов в сфере Machine Learning, которые

  • Хотят специализироваться на Компьютерном зрении
  • Уже используют практики Deep Learning и хотят расширить и систематизировать знания

Курс позволит переключиться с классических задач машинного обучения, таких как кредитный скоринг, оптимизация CTR, детекция фрода и т.д, и попасть в развивающуюся область Data Science, где сейчас происходит все самое интересное и открываются новые карьерные горизонты. Обучение даст вам необходимые компетенции, чтобы претендовать на специальности, требующие профессиональных навыков разработки систем компьютерного зрения. В разных компаниях специальности называются по-разному, самые распространенные варианты: Deep learning engineer, Computer Vision Engineer, AI Research Engineer [Computer Vision, Machine Learning], программист-исследователь, Deep Learning/Computer Vision. 

Во время курса вы:

  • Будете работать с открытыми датасетами для различных задач Computer Vision
  • Разберетесь в принципах работы и вариантах сверточных и пулинг-слоев, в том числе, специфических для задач детекции и сегментации объектов.
  • Научитесь применять механизм внимания в сверточных сетях.
  • Узнаете, какие идеи лежат в основе современных сверточных сетей (MobileNet, ResNet, EfficientNet, etc.)
  • Разберетесь в DL-подходах к детекции объектов - изучите семейство R-CNN, реалтайм-детекторы: YOLO, SSD. А также реализуете детектор объектов самостоятельно.
  • Научитесь решать задачу Deep Metric Learning с помощью сиамских сетей. Узнаете, что такое triplet loss, angular loss.
  • Получите опыт в решении задачи сегментации изображений: U-Net, DeepLab.
  • Научитесь применять fine tuning, transfer learning и собирать собственные датасеты для задач object detection и Image segmentation, metric learning.
  • Будете работать с генеративными состязательными сетями. Поймете, как можно использовать GANs для состязательных атак и как реализовать super resolution GANs.
  • Научитесь запускать модели на сервере (tensorflow serving, TFX). Познакомитесь с фреймворками для оптимизации нейросетей для инференса на мобильных/embedded-устройствах: Tensorflow Lite, TensorRT.
  • Изучите архитектуры для определения Facial Landmarks: Cascade shape regression, Deep Alignment Network, Stacked Hourglass Network

Необходимые знания

  • Основы мат. анализа, линейной алгебры, теории вероятностей и мат. статистики, метод обратного распространения.
  • Основы программирования на Python.
  • Знания, как устроены базовые архитектуры и слои нейронных сетей (сверточные/рекуррентные сети, батч-нормализация, сиамские сети и т. д.).